Division of Spang & Company

Technical Bulletin

Mathematics of Frequency Optimization for Maximum Transfer Power

Magnetic components can be made as small as possible for a specified output power if they deliver maximum core transfer power. One of the optimizations for achieving minimum core size is to operate the core at the switching frequency, f_s , that has acceptable power loss for converters operating deep in continuous-current mode (CCM). The linear equation for average transfer power through a *multi-winding transformer* or *coupled inductor* (or *transductor*) is

$$\overline{P} = \Delta W_L \cdot f_s = [\Delta B \cdot \overline{H} \cdot V] \cdot f_s = [(2 \cdot \hat{B}_{\sim}) \cdot \overline{H} \cdot V] \cdot f_s$$

where the energy transferred per cycle = ΔW_L , magnetic field density ripple (~) amplitude (^) = $\hat{B}_{\sim} = \Delta B/2$, average (⁻) field intensity = \overline{H} , and core volume = V. Linearity is assumed for magnetic operation whenever the *small-ripple approximation* ($dB \approx \Delta B \ll \overline{B}$) applies, such as converters operating deep in CCM. They have large average current and small Δi , with a *ripple factor*, $\gamma = (\Delta i/2)/\overline{i} = \hat{i}_{\sim}/I \ll 1$. (The boundary between CCM and DCM is at $\gamma = 1$, where CCM is $\gamma \leq 1$.) The average on-time circuit current, *I*, corresponds to \overline{H} in the \overline{P} equation, and is a static value – a constant. For a given core, the geometry is fixed; thus, *V* is constant and only $\hat{B}_{\sim}(f_s)$ varies in \overline{P} with frequency.

Magnetics Linearization

The field intensity ripple (~) amplitude (^), \hat{H}_{\sim} also varies linearly with current ripple in the circuit and is usually kept constant by controlling the peak on-time current. Then the *incremental permeability*, μ , at the op-pt, \overline{H}_0 , is

Incremental
$$\mu = \frac{dB}{dH}$$
, $\overline{H} = \overline{H}_0$

Graphically, incremental μ at an operating point of $\overline{H} = \overline{H}_0$ is shown below. The static μ is the slope of the line from the origin to the magnetic operating point of the core at $(\overline{B}, \overline{H})$ and is not the same as the incremental μ , which is the slope of the line tangent to the B(H) curve at the operating point and is the derivative, $dB/dH \approx \Delta B/\Delta H$. For nonlinear functions such as B(H), static and incremental μ are not the same. Variation of *B* for small variations of *H* around \overline{H} are linearized by moving along the tangent line, and if ΔH is small, is approximately the same as moving along the B(H) curve itself, resulting in an accurate approximation of magnetic behavior.

For linear components, such as resistors, static and incremental (or *small-signal*) parameters, R and r, are the same; r = R. But for nonlinear semiconductors such as Si p-n junctions, a voltage drop of 0.65 V at 1 mA has a static $R = 0.65 \text{ V/1 mA} = 650 \Omega$, whereas a small change in current around 1 mA produces a small change in voltage

determined by $r = \Delta v / \Delta i = 26 \text{ mV} / I \approx 26 \Omega$, an incremental resistance that is much less than the static resistance. Magnetic cores as nonlinear devices can be linearized in the same way as p-n junctions.

Maximum Transfer-Power Conditions

Per-cycle transfer power occurs at a rate of f_s and output power increases proportionally to frequency for constant \hat{B}_{\sim} . However, as \hat{H}_{\sim} is held constant, $\mu(f_s)$ decreases with f_s , causing ΔW_L to decrease with frequency. With a constant H waveform, $\hat{B}_{\sim} = \mu(f_s) \cdot \hat{H}_{\sim}$ also decreases with f_s .

The transfer-power equation can be regrouped into constant and frequency-dependent factors:

$$\overline{P} = \Delta W_L \cdot f_s = [2 \cdot \overline{H} \cdot V] \cdot [\hat{B}_{\sim}(f_s) \cdot f_s] = \text{constant} \cdot [\hat{B}_{\sim} \cdot f_s]$$

As f_s increases, $\hat{B}_{\sim}(f_s)$ of magnetic materials decreases. Maximum $\overline{P}(f_s)$ is found by setting the derivative of the transfer power to zero and solving:

$$\frac{dP(f_s)}{df_s} = \text{constant} \cdot \frac{d}{df_s} [\hat{B}_{\sim} \cdot f_s] = 0 \implies \frac{d}{df_s} [\hat{B}_{\sim} \cdot f_s] = 0 \text{, constant} \neq 0$$

Then differentiating, the maximum (or constant) power occurs under the condition that

$$\hat{B}_{\sim} + f_s \cdot \frac{d\hat{B}_{\sim}}{df_s} = 0 \implies \frac{d\hat{B}_{\sim}}{\hat{B}_{\sim}} = -\frac{df_s}{f_s} \implies \frac{\frac{dB_{\sim}}{\hat{B}_{\sim}}}{\frac{df_s}{f_s}} = -1$$

The equation shows that maximum power occurs whenever the fractional decrease in *B* ripple amplitude equals the fractional increase in the frequency. The two changes cancel and \overline{P} remains nearly constant around the maximum point. Integrate both sides of the above (center) differential equation, and the result is

$$\ln B_{\sim} = -\ln f_{\rm s} + C$$

where C is the arbitrary constant of integration. Choose the operating point, (f_{s0}, \hat{B}_{s0}) to determine C. Then

$$C = \ln B_{\sim 0} + \ln f_{s0}$$

Substituting and rearranging,

$$\ln \frac{\hat{B}_{-}}{\hat{B}_{-0}} = -\ln \frac{f_{s}}{f_{s0}} = \ln \frac{f_{s0}}{f_{s}} \implies \frac{\hat{B}_{-}}{\hat{B}_{-0}} = \frac{f_{s0}}{f_{s}} \implies \hat{B}_{-} = \frac{f_{s0}}{f_{s}} \cdot \hat{B}_{-0}$$

When this expression for \hat{B}_{\sim} at maximum transfer power is substituted back into the transfer-power equation, then

$$\overline{P} = [2 \cdot \overline{H} \cdot V] \cdot [\hat{B}_{\sim 0} \cdot f_{s0}] \implies \overline{P} / \overline{P}_0 = 1$$

The operating point, (f_{s0}, \hat{B}_{-0}) is at maximum transfer power under this condition.

Core Power Loss Density Exponents

Average core power loss density, \bar{p}_c , also imposes a limit on f_s . The generalized Steinmetz equation, normalized to an operating point at $\bar{p}_{c0}(f_{s0}, \hat{B}_{\sim 0})$ is

$$\frac{\overline{p}_c}{\overline{p}_{c0}} = \left(\frac{f_s}{f_{s0}}\right)^{\alpha} \cdot \left(\frac{\hat{B}_{\sim}}{\hat{B}_{\sim 0}}\right)^{\beta}$$

where exponents α and β depend on the material and are empirically determined. (Normalization eliminates a constant in the equation by using unitless ratios and removes the messiness of raising parameters with units to non-integer powers.) The "classical" values for the exponents are $\alpha = 2$ and $\beta = 2$, but they vary with material and frequency. For typical values, P-material ferrites have $\alpha \approx 1.36$ and $\beta \approx 2.62$, with \overline{p}_{c0} at operating point,

$$\overline{p}_{c0}(f_{s0}, \hat{B}_{\sim 0}) = \overline{p}_{c0} (100 \text{ kHz}, 11.5 \text{ mT}) = 100 \text{ mW/cm}^2$$

To find the exponent values, β is the slope of the log-log plots of $\bar{p}_c(\hat{B}_{\sim})$, as graphed below for Magnetics Kool Mµ Hf (KMHF) with relative permeability $\mu_r = 60$ (60µ) and with f_s held constant as the plot parameter. On the 100 kHz plot is the value $\bar{p}_c(\hat{B}_{\sim}) = 100 \text{ mW/cm}^3(55 \text{ mT})$.

Interpolation of Log Scales

A horizontal log axis is shown below.

Along the log scale, linear interpolation of a value at x between graph values of a and b is the fraction of linear distance, f between a and x and 1 - f between x and b. The linear fraction of distance of log(x) from log(a) between log(b) and log(a) is

$$f = \frac{\log x - \log a}{\log b - \log a} = \frac{\log\left(\frac{x}{a}\right)}{\log\left(\frac{b}{a}\right)} = \log_{(b/a)}(x/a)$$

To find the scale value of *x*, solve for *x*;

$$x = a \cdot \left(\frac{b}{a}\right)^f$$

The greatest need for interpolation is between 1 and 2 (or powers of ten thereof) and the rule can be applied:

$$x \approx 1 + f, f \in [0.1, 0.2], [0.9, 1.0]$$

 $x \approx 1 + (f - 0.1), f \in [0.2, 0.9]$

For example, for
$$f = 0.5$$
, $x = 1 + (0.5 - 0.1) = 1.4$. The more accurate value is 1.41. For $a = 0.04$ T, $b = 0.05$ T, and $f = 0.44$, then at 100 mW/cm³, $x = (0.04 \text{ T}) \cdot (0.05/0.04)^{0.44} = 44 \text{ mT}$.

The α exponent is found from the graph around the 100 kHz operating point by holding $\Delta \hat{B}_{\alpha}$ constant and finding

$$\alpha = \frac{\Delta \overline{p}_c}{\Delta f_s}$$
, $\Delta \hat{B} = 0 \text{ mT}$

The operating point $\hat{B}_{\sim 0} \approx 55$ mT (0.055 T) and two values of \bar{p}_c an octave on each side of the 100 kHz plot give

$$\alpha = \frac{\Delta \overline{p}_c}{\Delta f_s} = \frac{\log(300 \text{ mW/cm}^3) - \log(40 \text{ mW/cm}^3)}{\log(200 \text{ kHz}) - \log(50 \text{ kHz})} = \frac{\log(7.5)}{\log(4)} = 1.45, \ \hat{B}_z = 55 \text{ mT}$$

Shown below for comparison are power loss plots of both Kool Mµ (KM) and Kool Mµ H*f* (KMHF) alloys for $\mu_r = 60$ at $f_s = 100$ kHz and 500 kHz. Values from the power loss graph are:

Kool Mµ (KM):
$$\bar{p}_c = 100 \text{ mW/cm}^3$$
, at $B_z = 42.2 \text{ mT}$, $f_s = 100 \text{ kHz}$ and $B_z = 12.1 \text{ mT}$, $f_s = 500 \text{ kHz}$

Kool Mµ Hf (KMHF):
$$\overline{p}_c = 100 \text{ mW/cm}^3$$
, at $B_z = 55.4 \text{ mT}$, $f_s = 100 \text{ kHz}$, and $B_z = 15.8 \text{ mT}$, $f_s = 500 \text{ kHz}$

At the same power loss and at 100 kHz, KMHF \hat{B}_{\sim} is about 31 % higher than KM which corresponds (from the \overline{P} equation) to 31% greater transfer power through the core. At 500 kHz, the ratio of KMHF/KM transfer power advantage is maintained at 31%.

From the graph below, the values of α are derived for both KM and KMHF materials, from the following values read from the graph. The operating point is $(\hat{B}_{\sim 0}, f_s) = (50 \text{ mT}, 223.6 \text{ kHz})$, where $f_{s0} = \sqrt{(100 \text{ kHz}) \cdot (500 \text{ kHz})}$. The KMHF α value agrees with the previously calculated value, showing that there is no significant variation in α with frequency for these materials.

60µ Core Loss Density Comparison

Quantity	f_s , kHz	KM, mW/cm^3	KMHF, mW/cm ³
\overline{p}_c (50 mT)	100	141	82
\overline{p}_c (50 mT)	500	1652	950
ratio	5	11.72	11.59
log (ratio)	0.699	1.069	1.064
α		1.53	1.52

The KMHF β exponent is the plot slope. Around the operating point of $(f_{s0}, \hat{B}_{\sim 0}) = (100 \text{ kHz}, 50 \text{ mT})$, it is

$$\beta = \frac{\log(340 \text{ mW/cm}^3) - \log(30 \text{ mW/cm}^3)}{\log(100 \text{ mT}) - \log(30 \text{ mT})} = \frac{\log(340/30)}{\log(100/30)} = \frac{1.054}{0.523} = 2.02$$

Because both the KM and KMHF plots appear parallel, β is the same for both and also appears to not vary over a range of f_s in that all the plots are parallel. For both, $\beta \approx 2$, its "classical" value.

Finally, the power loss density equation as expressed for KMHF around op-pt, $(f_{s0}, \hat{B}_{-0}) = (100 \text{ kHz}, 50 \text{ mT})$ is

$$\frac{\overline{p}_c}{(100 \text{ mW/cm}^3)} = \left(\frac{f_s}{100 \text{ kHz}}\right)^{1.5} \cdot \left(\frac{\hat{B}_z}{55 \text{ mT}}\right)^2$$

For KM cores,

$$\frac{\overline{p}_c}{(100 \text{ mW/cm}^3)} = \left(\frac{f_s}{100 \text{ kHz}}\right)^{1.5} \cdot \left(\frac{\hat{B}_z}{42 \text{ mT}}\right)^2$$

These Steinmetz equations of KM and KMHF core materials differ only in that KMHF field density is 31% higher at the same power loss and frequency as KM material.

Maximum Power Loss Conditions

Maximum power loss with f_s is derived by setting the differentiated Steinmetz equation to zero;

$$\frac{d}{df_s} \left(\frac{\overline{p}_c}{\overline{p}_{c0}}\right) = \frac{1}{f_{s0}^{\alpha} \cdot \hat{B}_{s0}^{\beta}} \cdot \left[\alpha \cdot f_s^{\alpha-1} \cdot \hat{B}_{s}^{\beta} + f_s^{\alpha} \cdot \beta \cdot \hat{B}_{s}^{\beta-1} \cdot \frac{d\hat{B}_{s}}{df_s}\right]$$
$$= \frac{f_s^{\alpha-1} \cdot \hat{B}_{s0}^{\beta-1}}{f_{s0}^{\alpha} \cdot \hat{B}_{s0}^{\beta}} \cdot \left[\alpha \cdot \hat{B}_{s} + f_s \cdot \beta \cdot \frac{d\hat{B}_{s}}{df_s}\right] = 0$$

Solving for the condition for constant loss, it is the fractional change in B to the fractional change in f_s at constant core power loss density:

$$\frac{d\hat{B}_{\sim} / \hat{B}_{\sim}}{df_s / f_s} = -\frac{\alpha}{\beta} , \ \Delta \overline{p}_c = 0 \text{ mW/cm}^3$$

At maximum power loss, the $\overline{p}_c(f_s)$ curve peaks, and at the peak the change in \overline{p}_c with f_s is minimum, i.e. the point where the slope of the tangent to \overline{p}_c is zero and hence constant. For the classic values of $\alpha = 2$, $\beta = 2$, then

$$\frac{d\hat{B}_{\sim}/\hat{B}_{\sim}}{df_{s}/f_{s}} = -1$$

Constant power loss occurs under the same condition as constant transfer power. Consequently, they are independent of f_s whenever $\alpha/\beta = 1$.

When the constant-loss equation above is solved, the constraint on constant power loss is that

$$\frac{\hat{B}_{\sim}}{\hat{B}_{\sim 0}} = \left(\frac{f_s}{f_{s0}}\right)^{-\alpha/\beta} , \ \Delta \overline{p}_c = 0 \ \text{mW/cm}^3$$

When substituted into the Steinmetz equation, $(f_s/f_{s0})^0 = 1$ results, and $\overline{p}_c = \overline{p}_{c0}$.

The constant power loss constraint can be substituted into the transfer-power equation normalized to $\overline{P}_0(\hat{B}_{\sim 0}, f_{s0})$:

$$\frac{\overline{P}}{\overline{P_0}} = \left(\frac{\hat{B}_{\sim}}{\hat{B}_{\sim 0}}\right) \cdot \left(\frac{f_s}{f_{s_0}}\right) = \left(\frac{f_s}{f_{s_0}}\right)^{-\alpha/\beta} \cdot \left(\frac{f_s}{f_{s_0}}\right) \Longrightarrow \frac{\overline{P}}{\overline{P_0}} = \left(\frac{f_s}{f_{s_0}}\right)^{1-\frac{\alpha}{\beta}}, \ \frac{\overline{p}_c}{\overline{p}_{c_0}} \text{ constant}$$

This is the transfer power as a function of f_s with constant magnetic power loss. The closer α/β is to 1, the less dependent the transfer power is on frequency. For materials with $\alpha/\beta < 1$, transfer power rises with frequency at constant power loss. For KM and KMHF materials, $\alpha/\beta = 1.5/2 = 0.75 < 1$. The KMHF power loss plots show that the slope β does not decrease at the maximum frequency plot of 2 MHz.

Similarly, if the constant transfer power condition is substituted into the power loss equation, then

$$\frac{\overline{p}_{c}}{\overline{p}_{c0}} = \left(\frac{f_{s}}{f_{s0}}\right)^{\alpha-\beta} , \ \frac{\overline{P}}{\overline{P}_{0}} \text{ constant}$$

For $\alpha < \beta$, the exponent is negative and power loss (along with \hat{B}_{α}) decreases with f_s under constant transfer power. For $\alpha = \beta$, power loss is independent of (and constant with) frequency.

Consequently, choice of core material is optimized whenever transfer power relative to power loss is maximized, and this occurs for a minimum α/β .

When considering maximum operating frequency for a material, the $\mu(f_s)$ curve must also be taken into account, as inductance diminishes with frequency. The μ -related frequency parameter is f_{μ} , the frequency at which (the real or dissipative component of) μ decreases to 90% of its quasistatic value. As $\mu(f_s)$ decreases, so does field inductance, \mathcal{L}

and transfer power. It is not necessarily the case that a material cannot be useful above f_{μ} . Impedance is proportional with frequency, and with the result that peak impedance for a wound core occurs at a much higher frequency than f_{μ} .

References

- 1. Power Magnetics Design Optimization, JUL19 revision, D. L. Feucht, Innovatia, innovatia.com
- 2. www.how2power.com/pdf_view.php?url=/newsletters/1504/H2PowerToday1504_FocusOnMagnetics.pdf

DLF 02JAN20 18JUN20