MAGNETICS KOOL Mµ® E 型磁芯

简介

Kool Mµ® 磁粉芯由铁合金粉制成，具有高温下低损耗的特性。Kool Mµ E 型磁芯具有分布式气隙，适用于开关式稳压器电感、回转变压器和功率因数校正 (PFC) 电感。Kool Mµ 的饱和度可达 10,500 高斯，因而可以比间隙式铁氧体 E 型磁芯储存更多的能量，有助于降低磁芯的体积。与间隙式铁氧体 E 型磁芯相比，Kool Mµ E 型磁芯不仅价格富有竞争力，而且其特有的分布式气隙可以消除困扰铁氧体的间隙损耗问题。与粉状 E 型铁磁芯相比，Kool Mµ E 型磁芯显示出卓越的低损耗属性与优异的热属性。

表 1

<table>
<thead>
<tr>
<th>零件号</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D（最小值）</th>
<th>E（最小值）</th>
<th>F</th>
<th>L（额定值）</th>
<th>M（最小值）</th>
</tr>
</thead>
<tbody>
<tr>
<td>00K1207E (EF 12.6)</td>
<td>in (mm)</td>
<td>0.500±.010 (12.7)</td>
<td>0.252±.004 (6.4)</td>
<td>0.140±.006 (3.6)</td>
<td>0.178 (4.4)</td>
<td>0.350 (8.9)</td>
<td>0.140±.006 (3.6)</td>
<td>0.070 (1.8)</td>
</tr>
<tr>
<td>00K1808E (EI-187)</td>
<td>in (mm)</td>
<td>0.760±.012 (19.3)</td>
<td>0.319±.007 (8.1)</td>
<td>0.188±.006 (4.8)</td>
<td>0.218 (5.5)</td>
<td>0.548 (13.9)</td>
<td>0.188±.005 (4.8)</td>
<td>0.094 (2.4)</td>
</tr>
<tr>
<td>00K2510E (E-2425)</td>
<td>in (mm)</td>
<td>1.000±.015 (25.4)</td>
<td>0.375±.007 (9.5)</td>
<td>0.250±.004 (6.5)</td>
<td>0.245 (6.2)</td>
<td>0.740 (18.8)</td>
<td>0.250±.005 (6.2)</td>
<td>0.125 (3.2)</td>
</tr>
<tr>
<td>00K1307-E (DIN 3007)</td>
<td>in (mm)</td>
<td>1.185±.018 (30.1)</td>
<td>0.591±.009 (15)</td>
<td>0.278±.006 (7.1)</td>
<td>0.376 (9.7)</td>
<td>0.768 (19.5)</td>
<td>0.274±.008 (6.9)</td>
<td>0.201 (5.1)</td>
</tr>
<tr>
<td>00K3515E (EI-375)</td>
<td>in (mm)</td>
<td>1.360±.020 (34.5)</td>
<td>0.557±.009 (14.1)</td>
<td>0.368±.007 (9.4)</td>
<td>0.376 (9.6)</td>
<td>0.995 (25.3)</td>
<td>0.367±.008 (9.3)</td>
<td>0.175 (4.4)</td>
</tr>
<tr>
<td>00K4017E (EE 42/11)</td>
<td>in (mm)</td>
<td>1.687±.025 (42.8)</td>
<td>0.830±.013 (21.1)</td>
<td>0.424±.010 (10.8)</td>
<td>0.587 (15)</td>
<td>1.195 (30.4)</td>
<td>0.468±.010 (11.9)</td>
<td>0.234 (5.9)</td>
</tr>
<tr>
<td>00K4200E (DIN 42/15)</td>
<td>in (mm)</td>
<td>1.687±.025 (42.8)</td>
<td>0.830±.013 (21.1)</td>
<td>0.608±.010 (15.4)</td>
<td>0.587 (15)</td>
<td>1.195 (30.4)</td>
<td>0.468±.010 (11.9)</td>
<td>0.234 (5.9)</td>
</tr>
<tr>
<td>00K4202E (DIN 42/20)</td>
<td>in (mm)</td>
<td>1.687±.025 (42.8)</td>
<td>0.830±.013 (21.1)</td>
<td>0.788±.010 (20)</td>
<td>0.587 (15)</td>
<td>1.195 (30.4)</td>
<td>0.468±.010 (11.9)</td>
<td>0.234 (5.9)</td>
</tr>
<tr>
<td>00K4317E (EI-21)</td>
<td>in (mm)</td>
<td>1.609±.024 (40.9)</td>
<td>0.650±.011 (16.5)</td>
<td>0.493±.007 (12.5)</td>
<td>0.409 (10.4)</td>
<td>1.115 (28.3)</td>
<td>0.493±.008 (12.5)</td>
<td>0.238 (6)</td>
</tr>
<tr>
<td>00K5528E (DIN 55/21)</td>
<td>in (mm)</td>
<td>2.16±.032 (54.9)</td>
<td>1.085±.016 (27.6)</td>
<td>0.812±.015 (20.6)</td>
<td>0.729 (18.5)</td>
<td>1.476 (37.5)</td>
<td>0.660±.015 (16.8)</td>
<td>0.330 (8.4)</td>
</tr>
<tr>
<td>00K5530E (DIN 55/25)</td>
<td>in (mm)</td>
<td>2.16±.032 (54.9)</td>
<td>1.085±.016 (27.6)</td>
<td>0.966±.015 (24.6)</td>
<td>0.729 (18.5)</td>
<td>1.476 (37.5)</td>
<td>0.660±.015 (16.8)</td>
<td>0.330 (8.4)</td>
</tr>
<tr>
<td>00K6527E (Metric E65)</td>
<td>in (mm)</td>
<td>2.56±.050 (65.1)</td>
<td>1.279±.150 (32.5)</td>
<td>1.063±.016 (27)</td>
<td>0.874 (22.2)</td>
<td>1.740 (44.2)</td>
<td>0.775±.012 (19.7)</td>
<td>0.394 (10)</td>
</tr>
<tr>
<td>00K7228E (F11)</td>
<td>in (mm)</td>
<td>2.850±.043 (72.4)</td>
<td>1.100±.020 (27.9)</td>
<td>0.750±.015 (19.1)</td>
<td>0.699 (17.8)</td>
<td>2.072 (52.6)</td>
<td>0.750±.015 (19.1)</td>
<td>0.375 (9.5)</td>
</tr>
<tr>
<td>00K8020E (Metric E80)</td>
<td>in (mm)</td>
<td>3.150±.047 (80)</td>
<td>1.500±.025 (38.1)</td>
<td>0.780±.015 (19.8)</td>
<td>1.103 (28.1)</td>
<td>2.334 (59.3)</td>
<td>0.780±.015 (19.8)</td>
<td>0.390 (9.9)</td>
</tr>
</tbody>
</table>
材料和直流偏压

Kool Mµ E 型磁芯具有四种磁导率：26µ、40µ、60µ 和 90µ。下表列出了每种磁芯的磁性数据。对开关式稳压器电感材料而言，最重要的参数是其在直流偏压下提供电感或磁导率的能力。图 2 为磁导率随直流偏压的增加而减小的函数曲线。Kool Mµ 的分布式气隙使电感-直流偏压曲线变缓。在大多数应用中这样的电感是受欢迎的，因为它既能提高效率又能拓宽操作范围。当电流需求固定时，较为平缓的电感-直流偏压曲线可以在过载情形下提供额外的保护。图 2 以半对数曲线的形式描述了高电流下的直流偏压特性。

表 2

<table>
<thead>
<tr>
<th>零件号</th>
<th>A, mH/1000 转±8 %</th>
<th>路径长度</th>
<th>截面面积</th>
<th>体积</th>
</tr>
</thead>
<tbody>
<tr>
<td>00K1207E***</td>
<td>-</td>
<td>2.96</td>
<td>0.13</td>
<td>0.385</td>
</tr>
<tr>
<td>00K1808E***</td>
<td>26</td>
<td>4.01</td>
<td>0.228</td>
<td>0.914</td>
</tr>
<tr>
<td>00K2510E***</td>
<td>39</td>
<td>4.85</td>
<td>0.385</td>
<td>1.87</td>
</tr>
<tr>
<td>00K3007E***</td>
<td>33</td>
<td>6.56</td>
<td>0.601</td>
<td>3.94</td>
</tr>
<tr>
<td>00K3515E***</td>
<td>56</td>
<td>6.94</td>
<td>0.84</td>
<td>5.83</td>
</tr>
<tr>
<td>00K4017E***</td>
<td>56</td>
<td>9.84</td>
<td>1.28</td>
<td>12.6</td>
</tr>
<tr>
<td>00K4020E***</td>
<td>80</td>
<td>9.84</td>
<td>1.83</td>
<td>18</td>
</tr>
<tr>
<td>00K4022E***</td>
<td>104</td>
<td>9.84</td>
<td>2.37</td>
<td>23.3</td>
</tr>
<tr>
<td>00K4317E***</td>
<td>88</td>
<td>7.75</td>
<td>1.52</td>
<td>11.8</td>
</tr>
<tr>
<td>00K5528E***</td>
<td>116</td>
<td>12.3</td>
<td>3.5</td>
<td>43.1</td>
</tr>
<tr>
<td>00K5530E***</td>
<td>138</td>
<td>12.3</td>
<td>4.17</td>
<td>51.4</td>
</tr>
<tr>
<td>00K6527E***</td>
<td>162</td>
<td>14.7</td>
<td>5.4</td>
<td>79.4</td>
</tr>
<tr>
<td>00K7228E***</td>
<td>130</td>
<td>13.7</td>
<td>3.68</td>
<td>50.3</td>
</tr>
<tr>
<td>00K8020E***</td>
<td>103</td>
<td>18.5</td>
<td>3.89</td>
<td>72.1</td>
</tr>
</tbody>
</table>

*** 磁导率代码已加入零件号，例如，磁导率为 60µ 时其完整的零件号就是 00K1808E060
与间隙式铁氧体的对比

虽然高级铁氧体磁芯的损耗比 Kool Mµ 磁芯损耗低，但高电平时铁氧体通常需要较低的有效磁导率才能阻止饱和。而铁氧体的初始磁导率又很高，这样就需要相对较大的气隙才能获得较低的有效磁导率。而大气隙又会产生间隙损耗（这个复杂问题通常会在比较材料损耗曲线时被忽略掉）。简单来说，由于气隙周围存在边缘通量，间隙损耗会大幅增加损耗量（图 3）。边缘通量与铜线圈相交，会在导线中产生过量涡流。

由于 Kool Mµ 的磁通量比铁氧体的两倍还多，Kool Mµ 的直流偏流特性明显比后者好（图 4）。这样，在通常衰减 50% 的情况下，如果设计方案使用适度饱和的 Kool Mµ，那么就可以在磁芯体积减少 35% 的情况下获得更佳性能。高温时二者的磁通量差异会更加明显，因为铁氧体的磁通量会随温度升高而降低，而 Kool Mµ 则保持相对稳定。

与 Kool Mµ E 型磁芯相比，间隙式铁氧体磁芯也具有自己的优点。一般情况下间隙式铁氧体的电感容限为 ±3%，而 Kool Mµ 的电感容限为 ±8%。间隙式铁氧体也有更多的尺寸和形状供您选择。另外，由于铁氧体材料的间隙有效磁导率更高些，因此非常适用于低偏压应用（如前馈变压器和低偏压电感器）。

![间隙式铁氧体](image1)

![图 3](image2)

![图 4](image3)
与铁粉的对比

Kool Mµ 比铁粉的优越之处主要在于其具有较低的磁芯损耗，见图 5。并且 Kool Mµ（Al、Si、Fe 合成物）与铁粉（纯 Fe 成分）具有相似的直流偏压特性，见图 6。除了能够承受直流偏压，开关式稳压器电感还能承受一定的交流电流（通常为 10 kHz 到 300kHz）。这样的交流电流可以产生高频磁场，进而导致磁芯损耗并使磁芯发热。对于 Kool Mµ，这种影响将减小，因此电感将更为有效且工作温度更低。另外，Kool Mµ 的磁致伸缩近乎零，可以降低铁粉磁芯、铁氧体或硅铁片在 20Hz 到 20kHz 范围内工作时通常会产生的噪音。
性能随温度的变化

如果居里温度约为 500°C 并且是在 -65°C 到 +200°C 的范围内持续工作，Kool Mµ 就能在整个温度范围内提供卓越性能。与铁粉不同，Kool Mµ 在制造过程中未使用有机粘结剂，因而就能摆脱困扰铁粉磁芯的热老化问题。另外，Kool Mµ 的电感也能在温度变化时保持相对稳定，见图 7。和某些铁氧体材料不同的是，Kool Mµ 的损耗不会随温度的升高而增大。此外，高温时 Kool Mµ 的饱和磁通密度不会显著下降，此特性会降低铁氧体的直流偏压处理能力。

![图7](image)

漏磁通

当部分磁场超出磁芯结构之外就会发生漏磁通。所有变压器和电感器都会产生一定量的漏磁通，但低磁导率材料所产生的漏磁通比高磁导率材料要多。为了防止饱和，高磁导率铁氧体通常都带有间隙，而且经常会采用单一间隙。在这种结构下，漏磁通将集中在单一气隙的周围。低磁导率材料（如 Kool Mµ）的气隙呈分布式的，因而漏磁通也分布在磁芯结构的四周。

漏磁通会增加磁芯的有效面积、减少其有效路径长度。这样，低磁导率磁芯的测量电感通常比其计算值大，请看下面的公式:

\[
L = 0.4 \pi \mu N^2 A_e 10^{-8} / l_e
\]

其中:
L = 电感量 (以亨为单位)
\(\mu \) = 磁芯磁导率
N = 转数
\(A_e \) = 有效截面积 (以 cm² 为单位)
\(l_e \) = 磁芯磁路长度 (以 cm 为单位)

磁芯外型尺寸也会影响漏磁通。对 E 型磁芯而言，线圈越长漏磁通越小。另外，线圈体积越大磁芯的漏磁通也越大。
外部漏磁场

磁芯形状影响外部漏磁场。因为对 E 型磁芯而言，磁芯的大部分都围绕着线圈，而对环形磁芯而言是线圈围绕磁芯，所以前者的外部漏磁场大于后者。使用 Kool Mu E 型磁芯时，必须考虑其外部漏磁场。Kool Mu E 型磁芯不能用金属支架安装，因为漏磁通会在支架中集中，导致总损耗增加。布置电路板时一定要考虑漏磁场。易于受漏磁场影响的组件应当远离 Kool Mu E 型磁芯，该距离近似于其与间隙式铁氧体的间距。欲了解该内容的详细信息，请向 Magnetics 应用工程部门索取有关《Kool Mu E 型磁芯漏磁通考虑事项》的白皮书副本。

金属构件

多数尺寸的 Kool Mu E 型磁芯都可使用金属构件，见表 3。另外还有供多数尺寸使用的普通或无销钉式线圈管。详细信息请参考《Magnetics 粉末磁芯设计手册》5.5 页。磁芯采用的是行业标准尺寸，因而能配合许多不同来源的标准线圈管使用。组装磁芯时，首先依照表面啮合情况将各部件接合起来，然后轻轻敲打该组合的周边。

表 3

<table>
<thead>
<tr>
<th>磁芯编号</th>
<th>线圈管编号</th>
<th>铁芯数</th>
<th>线圈面积 (in²)</th>
<th>线圈面积 (cm²)</th>
<th>每转长度 (ft)</th>
<th>每转长度 (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00K1808E (EI-187)</td>
<td>PCB18081</td>
<td>8</td>
<td>0.049</td>
<td>0.316</td>
<td>0.133</td>
<td>4.05</td>
</tr>
<tr>
<td>00K2510E (E-2425)</td>
<td>PCB2510T1</td>
<td>10</td>
<td>0.063</td>
<td>0.406</td>
<td>0.178</td>
<td>5.42</td>
</tr>
<tr>
<td>00K3007E (DIN 30/7)</td>
<td>PCB3007T1</td>
<td>10</td>
<td>0.129</td>
<td>0.833</td>
<td>0.180</td>
<td>5.48</td>
</tr>
<tr>
<td>00K3515E (EI-375)</td>
<td>PCB3515L1</td>
<td>12</td>
<td>0.147</td>
<td>0.948</td>
<td>0.241</td>
<td>7.34</td>
</tr>
<tr>
<td>00K4020E (DIN 42/15)</td>
<td>PCB4020L1</td>
<td>12</td>
<td>0.300</td>
<td>1.94</td>
<td>0.300</td>
<td>9.14</td>
</tr>
<tr>
<td>00K4022E (DIN 42/20)</td>
<td>PCB4022L1</td>
<td>12</td>
<td>0.300</td>
<td>1.94</td>
<td>0.335</td>
<td>10.21</td>
</tr>
<tr>
<td>00K4317E (EI-21)</td>
<td>PCB4317L1</td>
<td>12</td>
<td>0.156</td>
<td>1.01</td>
<td>0.281</td>
<td>8.56</td>
</tr>
<tr>
<td>00K5532E (DIN 55/21)</td>
<td>PCB5532WA</td>
<td>20</td>
<td>0.468</td>
<td>3.02</td>
<td>0.352</td>
<td>10.73</td>
</tr>
<tr>
<td>00K5530E (DIN 55/25)</td>
<td>PCB5530WA</td>
<td>14</td>
<td>0.448</td>
<td>2.89</td>
<td>0.439</td>
<td>13.38</td>
</tr>
<tr>
<td>00K7228E (F11)</td>
<td>00B722801</td>
<td>-</td>
<td>0.632</td>
<td>4.08</td>
<td>0.49</td>
<td>14.94</td>
</tr>
<tr>
<td>00K8020E (Metric E80)</td>
<td>00B802001</td>
<td>-</td>
<td>1.25</td>
<td>8.06</td>
<td>0.542</td>
<td>16.52</td>
</tr>
</tbody>
</table>

延展

Kool Mu E 型磁芯未来可预期的尺寸延展范围。适用时，金属构件将随磁芯一起提供。另外，还提供 U 型磁芯和部件（某些尺寸现在就有）。欲获得未来的产品通告，仍然可以联系 Magnetics 的应用工程部门或访问我们的网站。
磁芯选择过程

只需要知道设计应用的两个参数：直流偏压所需的电感和直流电流。采用以下步骤确定磁芯尺寸和转数。

1. 计算 LI^2 的结果，其中：
 \[L = \text{直流偏压所需的电感 (mH)} \]
 \[I = \text{直流电流 (安培)} \]

2. 在磁芯选择表（第 8 页）上找到 LI^2 的值。沿此坐标向上，在磁导率斜线（小磁芯尺寸在下方，大磁芯尺寸在上方）上找到具有第一个磁芯尺寸的交点。这就是可以使用的最小磁芯尺寸。

3. 磁导率线包含几段可用标准磁芯磁导率。选择它所指示的磁导率将获得可以使用的最小磁芯尺寸。当然也可以使用更低或更高的磁导率，但这时磁芯尺寸将会变大。

4. 现在已经知道电感、磁芯尺寸和磁导率。请采用以下步骤计算转数：
 a) 磁芯的额定电感 (A_L，单位是 $\text{mH} / 1000$ 转) 得自磁芯数据表。使用最坏情况的负容限 (-8%) 确定最小额定电感。获得此信息后，使用 $N = \left(\frac{L \times 10^6}{A_L} \right)^{1/2}$ 计算要得到所需电感 (mH) 必须运行的转数。
 b) 根据 $H = 0.4 \pi NI / l_e$（l_e 单位是 cm）计算偏压（奥斯特）。
 c) 根据磁导率-直流偏压曲线，确定先前计算所得偏压电平在每单位初始磁导率 (mpu) 的下降量。
 d) 用初始转数（来自步骤 4a）除以初始磁导率的单位值 (mpu)，以此增加转数。用以上方法得到的电感量近似于所需值。如果需要特定电感量，则可能需要对转数进行最终调整。

5. 使用导线表选择正确的导线尺寸。低于 100% 的占空度允许较小的导线尺寸和较低的绕组因数，但禁止用较小的磁芯尺寸。

6. 与使用指定直流电流偏置后所需的电感量相比，您所选择的磁芯将产生至少与之相等的电感。此时绕组因数将在 50% 和 80% 之间。
磁芯选择表

<table>
<thead>
<tr>
<th>磁芯型号</th>
<th>1</th>
<th>10</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>K4022</td>
<td>26μH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K4020</td>
<td>60μH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K4317</td>
<td>90μH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3515</td>
<td>40μH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K5528</td>
<td>26μH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K5530</td>
<td>60μH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K3007</td>
<td>90μH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K8020</td>
<td>40μH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K2510</td>
<td>26μH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K1808</td>
<td>60μH</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

使用上表可以快速得到直流偏压应用中最适宜的磁导率和最小磁芯尺寸。该表基于以下条件：直流偏压所产生的磁导率降低幅度不超过 20%，线圈管采用 50% 到 80% 的典型绕组因数，交流电流小于直流电流。另外，该表采用了所选磁芯尺寸和磁导率下的最小电感容限。

如果磁芯工作时的交流电流大于所有直流电流（如回转电感），就应该选择尺寸大于上表值的磁芯。如此有助于降低交流电流的工作通量密度（导致磁芯损耗）。

MAGNETICS
亚洲营销和顾客服务部
香港九龙尖沙嘴
传真：852-3102-9337
网站：www.mag-inc.com
电子邮件：magnetics@spang.com

©2005 Magnetics
保留所有权利
KMC-E1 CS Rev 7