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Core Volume Minimization Theory 

An important criterion in converter design is size, especially of magnetic components. This bulletin derives and 

explains how to use formulas for achieving the design goal of minimum core volume, V. The following derivation of 

design equations applies four constraints. Three are incremental or small-signal expressions of circuit flux change: 
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where λp is the primary winding circuit flux of Np primary turns, Lp is primary circuit inductance, p is the field flux, 

and Vp is the voltage applied to the primary winding during on-time, DTs. The primary winding handles the most 

power and places the greatest demand on core size. Then: 
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where ~B̂ = ΔB/2 is the amplitude of the B-field ripple and A is the core magnetic cross-sectional area. Another way to 

express Δp is from: 
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where L (AL in catalog data) is the field inductance, L/N 2 and Ni = Ni = the field current. This equation is the flux-

current relationship, λ = Li for circuit flux, inductance, and current referred to the magnetic field of the core, as given 

in the following table. N is the referral parameter between corresponding field and circuit quantities.  

 

Reference-Frame Current Inductance  Flux  Voltage 

electrical circuit 

(terminal quantities) 

circuit current, 

i 
circuit inductance, L 

circuit flux, 

=N 

circuit voltage, 

v 

magnetic field 

field current 

(MMF), 

Ni = Ni  

field inductance (per-turn-

squared inductance, AL), L 
field flux, 

 

field voltage, 

v/N 

 

Equating first and second flux-change expressions of the first equation above, and solving for the v-i relationship 

for the primary inductance, 
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Equating the circuit and field expressions for Δλp (the second and third expressions) and solving for Np, 
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This equation shows that Np and 
~B̂  affect core size through A. 

The previous two equations are related by circuit and field inductance: 
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where the geometric formula for field inductance is 
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Then combining expressions for Lp and Np,  
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Solving the first and last expressions for core volume, 
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This relationship was derived from the Δλp relationships, all of which apply incrementally around the B-H operating 

point (op-pt), ),( BH , set by Ip. Δip and ΔB = 2∙
~B̂ are incremental or small-signal variables that apply at the B-H op-

pt, where μ is the incremental permeability, not the static μstatic, as shown on the graph below.  

 

Permeability, μ, is a material property by which L varies with core size. Permeability is usually given in magnetics 

data as relative permeability, μr. Then 

μH/m 257.1nH/m) π400(0 == rrr   

Permeability varies with B-H op-pt and for CCM converter operation should be taken as the incremental μ at the 

operating point, 
~

ˆˆ BBB −= , where HB static =  . If ΔB is small, then the variation of μ over the ΔB range can be 

regarded as negligible and μ considered constant. 

The fourth constraint is the amount of static magnetic field that the core can support. This is a quiescent large-

signal or total-variable quantity. The average magnetic core saturation is quantified by the op-pt magnetic field 

intensity, H . By Ampere’s Law, 
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This saturation constraint leads to another expression for core volume by substituting for Np from above: 
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This volume, unlike the previous expression, is derived from large-signal characteristics and contains op-pt parameter 

H . Equating volumes results in 
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The two expressions can be solved for the average ripple factor, 
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which applies as much to field quantities as to circuit current waveforms. In its most basic and useful form, 
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This can be interpreted as a ratio of the per-cycle average primary winding power over magnetic power density. Under 

the condition that γ = γopt, for which ΔB· H  is maximum, then V is minimized.  
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